1,118 research outputs found

    Near infrared observations of quasars with extended ionized envelopes

    Get PDF
    We have observed a sample of 15 and 8 quasars with redshifts between 0.11 and 0.87 (mean value 0.38) in the J and K' bands respectively. Eleven of the quasars were previously known to be associated with extended emission line regions. After deconvolution of the image, substraction of the PSF when possible, and identification of companions with the help of HST archive images when available, extensions are seen for at least eleven quasars. However, average profiles are different from that of the PSF in only four objects, for which a good fit is obtained with an r1/4r^{1/4} law, suggesting that the underlying galaxies are ellipticals. Redshifts were available in the literature for surrounding objects in five quasar fields. For these objects, one to five companion galaxies were found. One quasar even belongs to a richness class 1 cluster. Most other quasars in our sample have nearby galaxies in projection which may also be companions. Environmental effects are therefore probably important to account for the properties of these objects.Comment: Accepted for publication in A&A

    Integral field spectroscopy of the radio galaxy 3C 171

    Get PDF
    We have performed integral field spectroscopy of the radio galaxy 3C 171 (redshift z=0.238) with the TIGER instrument at the Canada France Hawaii telescope in the Hbeta-[OIII]4959-5007 wavelength region. We present the reconstructed Hbeta and [OIII] images and compare them to the HST and radio maps. We discuss the variations of the [OIII]/Hbeta line ratio throughout the nebulosity. We also analyze the velocity field in detail, in particular the presence of several components. We find that the kinematics derived with emission lines in the central region (inside 1 arcsec) are compatible with a disk-like rotation of low amplitude (50 km/s). The continuum surface brightness profile follows an r^{1/4} law, suggesting that the underlying galaxy is an elliptical with an effective radius of 15 kpc. We have fit two components in the region centered 2.7 arcsec to the West and of extension 3 arcsec^2. We find that the blueshifted component is an extension of the central part, whereas the second one is redshifted by 600 km/s. In both components, line ratios and FWHM are compatible with the presence of shocks induced by jet-cloud interactions.Comment: 8 pages, 15 figures. Accepted for publication in A&A Main Journal (July, 3rd

    GRBs and fundamental physics

    Full text link
    Gamma-ray bursts (GRBs) are short and intense flashes at the cosmological distances, which are the most luminous explosions in the Universe. The high luminosities of GRBs make them detectable out to the edge of the visible universe. So, they are unique tools to probe the properties of high-redshift universe: including the cosmic expansion and dark energy, star formation rate, the reionization epoch and the metal evolution of the Universe. First, they can be used to constrain the history of cosmic acceleration and the evolution of dark energy in a redshift range hardly achievable by other cosmological probes. Second, long GRBs are believed to be formed by collapse of massive stars. So they can be used to derive the high-redshift star formation rate, which can not be probed by current observations. Moreover, the use of GRBs as cosmological tools could unveil the reionization history and metal evolution of the Universe, the intergalactic medium (IGM) properties and the nature of first stars in the early universe. But beyond that, the GRB high-energy photons can be applied to constrain Lorentz invariance violation (LIV) and to test Einstein's Equivalence Principle (EEP). In this paper, we review the progress on the GRB cosmology and fundamental physics probed by GRBs.Comment: 38 pages, 18 figures, Review based on ISSI workshop "Gamma-Ray Bursts: a Tool to Explore the Young Universe" (2015, Beijing, China), accepted for publication in Space Science Review

    Semiclassical gaps in the density of states of chaotic Andreev billiards

    Get PDF
    The connection of a superconductor to a chaotic ballistic quantum dot leads to interesting phenomena, most notably the appearance of a hard gap in its excitation spectrum. Here we treat such an Andreev billiard semiclassically where the density of states is expressed in terms of the classical trajectories of electrons (and holes) that leave and return to the superconductor. We show how classical orbit correlations lead to the formation of the hard gap, as predicted by random matrix theory in the limit of negligible Ehrenfest time \tE, and how the influence of a finite \tE causes the gap to shrink. Furthermore, for intermediate \tE we predict a second gap below E=\pi\hbar /2\tE which would presumably be the clearest signature yet of \tE-effects.Comment: Refereed version. 4 pages, 3 figure

    High resolution study of associated C IV absorption systems in NGC 5548

    Get PDF
    We present the results of a careful analysis of associated absorption systems toward NGC 5548. Most of the well resolved narrow components in the associated system, defined by the Lyman alpha, C IV and N V profiles, show velocity separation similar (to within 10~\kms) to the C IV doublet splitting. We estimate the chance probability of occurrence of such pairs with velocity separation equal to C IV doublet splitting to be 6×1036\times10^{-3}. Thus it is more likely that most of the narrow components are line-locked with C IV doublet splitting. This will mean that the radiative acceleration plays an important role in the kinematics of the absorbing clouds. We build grids of photoionization models and estimate the radiative acceleration due to all possible bound-bound transitions. We show that the clouds producing absorption have densities less than 109cm310^9 cm^{-3}, and are in the outer regions of the broad emission line region (BLR). We note that the clouds which are line-locked cannot produce appreciable optical depths of O VII and O VIII, and hence cannot be responsible for the observed ionized edges, in the soft X-ray. We discuss the implications of the presence of optically thin clouds in the outer regions of the BLR to the models of broad emission lines.Comment: 21 pages, latex (aasms4 style), incluedes 4 ps figures. To appear in Astrophysical Journa

    Automatic alignment of surgical videos using kinematic data

    Full text link
    Over the past one hundred years, the classic teaching methodology of "see one, do one, teach one" has governed the surgical education systems worldwide. With the advent of Operation Room 2.0, recording video, kinematic and many other types of data during the surgery became an easy task, thus allowing artificial intelligence systems to be deployed and used in surgical and medical practice. Recently, surgical videos has been shown to provide a structure for peer coaching enabling novice trainees to learn from experienced surgeons by replaying those videos. However, the high inter-operator variability in surgical gesture duration and execution renders learning from comparing novice to expert surgical videos a very difficult task. In this paper, we propose a novel technique to align multiple videos based on the alignment of their corresponding kinematic multivariate time series data. By leveraging the Dynamic Time Warping measure, our algorithm synchronizes a set of videos in order to show the same gesture being performed at different speed. We believe that the proposed approach is a valuable addition to the existing learning tools for surgery.Comment: Accepted at AIME 201

    High-Resolution Keck Spectra of the Associated Absorption Lines in 3C 191

    Get PDF
    Associated absorption lines (AALs) are valuable probes of the gaseous environments near quasars. Here we discuss high-resolution (6.7 km/s) spectra of the AALs in the radio-loud quasar 3C 191 (redshift z=1.956). The measured AALs have ionizations ranging from Mg I to N V, and multi-component profiles that are blueshifted by ~400 to ~1400 km/s relative to the quasar's broad emission lines. These data yield the following new results. 1) The density based on Si II*/Si II lines is ~300 cm-3, implying a distance of ~28 kpc from the quasar if the gas is photoionized. 2) The characteristic flow time is thus \~3 x 10^7 yr. 3) Strong Mg I AALs identify neutral gas with very low ionization parameter and high density. We estimate n_H > 5 x 10^4 cm-3 in this region, compared to ~15 cm-3 where the N V lines form. 4) The total column density is N_H < 4 x 10^18 cm-2 in the neutral gas and N_H ~ 2 x 10^20 cm-2 in the moderately ionized regions. 5) The total mass in the AAL outflow is M ~ 2 x 10^9 Mo, assuming a global covering factor (as viewed from the quasar) of ~10% >. 6) The absorbing gas only partially covers the background light source(s) along our line(s) of sight, requiring absorption in small clouds or filaments <0.01 pc across. The ratio N_H/n_H implies that the clouds have radial (line- of-sight) thicknesses <0.2 pc. These properties might characterize a sub-class of AALs that are physically related to quasars but form at large distances. We propose a model for the absorber in which pockets of dense neutral gas are surrounded by larger clouds of generally lower density and higher ionization. This outflowing material might be leftover from a blowout associated with a nuclear starburst, the onset of quasar activity or a past broad absorption line (BAL) wind phase.Comment: 15 pages text plus 6 figures, in press with Ap

    A kinematical analysis of NGC 2992

    Get PDF
    We present long slit spectroscopy for the [OIII] and Hα\alpha wavelength ranges along nine different position angles for the Sa Seyfert 1.9 galaxy NGC 2992. Double profiles are present in several regions, suggesting that the gas is not simply following galaxy rotation. A simple kinematical model, which takes into account circular rotation together with a constant radial outflow, seems to be a good approximation to account for the observed kinematics.Comment: Accepted for publication in Astronomy & Astrophysic

    Probing the BLR in AGNs using time variability of associated absorption line

    Full text link
    It is know that most of the clouds producing associated absorption in the spectra of AGNs and quasars do not completely cover the background source (continuum + broad emission line region, BLR). We note that the covering factor derived for the absorption is the fraction of photons occulted by the absorbing clouds, and is not necessarily the same as the fractional area covered. We show that the variability in absorption lines can be produced by the changes in the covering factor caused by the variation in the continuum and the finite light travel time across the BLR. We discuss how such a variability can be distinguished from the variability caused by other effects and how one can use the variability in the covering factor to probe the BLR.Comment: 12 pages, latex(aaspp4.sty), 2 figures, (To appear in ApJ

    The Flux Auto- and Cross-Correlation of the Lyman-alpha Forest. II. Modelling Anisotropies with Cosmological Hydrodynamic Simulations

    Full text link
    The isotropy of the Lyman-alpha forest in real-space uniquely provides a measurement of cosmic geometry at z > 2. The angular diameter distance for which the correlation function along the line of sight and in the transverse direction agree corresponds to the correct cosmological model. However, the Lyman-alpha forest is observed in redshift-space where distortions due to Hubble expansion, bulk flows, and thermal broadening introduce anisotropy. Similarly, a spectrograph's line spread function affects the autocorrelation and cross-correlation differently. In this the second paper of a series on using the Lyman-alpha forest observed in pairs of QSOs for a new application of the Alcock-Paczynski (AP) test, these anisotropies and related sources of potential systematic error are investigated with cosmological hydrodynamic simulations. Three prescriptions for galactic outflow were compared and found to have only a marginal effect on the Lyman-alpha flux correlation (which changed by at most 7% with use of the currently favored variable-momentum wind model vs. no winds at all). An approximate solution for obtaining the zero-lag cross-correlation corresponding to arbitrary spectral resolution directly from the zero-lag cross-correlation computed at full-resolution (good to within 2% at the scales of interest) is presented. Uncertainty in the observationally determined mean flux decrement of the Lyman-alpha forest was found to be the dominant source of systematic error; however, this is reduced significantly when considering correlation ratios. We describe a simple scheme for implementing our results, while mitigating systematic errors, in the context of a future application of the AP test.Comment: 20 page
    corecore